RESEARCH TEAMS

HomeResearch Teams7 : Stem Cells Biotechnologies

STEM CELLS BIOTECHNOLOGIES

“Stem Cells Biotechnologies” is a multidisciplinary team, composed of engineers, biologists, physicians, surgeons and pharmacists. The team’s research axes relate to bioengineering, bioprinting technologies, and stem cell biology, with the aim of translating basic research to clinical use.

To construct living tissues in vitro, potent tools have been derived from new materials and engineering processes, which have set the basis for the so-called scaffold and cell-printing paradigms. Such techniques can provide appropriately scaled solutions to clinical situations. However, such constructs still fail to address the multiscale structural and functional richness of a complex organ, which relies on a complex microstructured and multiparametric environment, cell-cell interactions, as well as on efficient connections to the rest of the body such as vascularization and innervation to allow it to survive and fulfill its role in the host body.
Recently, the development of stem cell culture in 3D matrices has revealed the cells’ self-organization capabilities in vitro. When forced to differentiate towards a specific lineage, embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) grown in 3D lead to the self-organization of complex, functional, multilayered tissues arranged in a manner comparable to that observed in organs ― and thus accounting for their designation as ‘organoids’. However, these biologically relevant structures suffer technical limits as well as scale and reproducibility problems that hinder their routine use. Given the sensitivity of cellular self-organization processes to spatial boundaries, the association of engineered 3D environments with stem cell growth and development thus appears to us to be a promising avenue to efficiently build large-scale organized and functional tissue constructs.
Based on the expertise of the team in stem cells, micropatterning, bioprinting, cell sheet technologies, and cell- and tissue-based applications, our goal is to implement emerging engineering technologies with the aim of translating our research to clinical application. By taking control over the environmental and structural parameters of cell constructs, we aim to better understand the environment’s influence on multicellular self-organization and functionality.
.

PROJECTS

Tissue engineering : in utero stem cell therapy
Tissue engineering : in vitro to in vivo
Tissue engineering : in vivo to in vivo
Epithelial stromal interactions of the corneal stem cell niche
Mesenchymal stem cells and autoimmune and inflammatory diseases